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We present results from the KamLAND-Zen double-beta degpgrment based on an exposure of 77.6 days
with 129 kg of '**Xe. The measured two-neutrino double-beta decay halflif€Xe is 77, = 2.38 +
0.02(stat) 4 0.14(syst) x 102! yr, consistent with a recent measurement by EXO-200. Weddiain a lower
limit for the neutrinoless double-beta decay half-lif§y, > 5.7 x 10** yr at 90% C.L.

PACS numbers: 23.40.-s, 21.10.Tg, 14.60.Pq

Majorana neutrinos are a natural feature of many high- KamLAND-Zen (Fig.[1) is a modification of the exist-
energy theoretical models. However, the only viable experiing KamLAND detector carried out in the summer of 2011.
mental probe of this property at present is neutrinolesbldou The 35 source/detector is 13 tons of Xe-loaded liquid scin-
beta (0v33) decay. Observation of this lepton-number violat- tillator (Xe-LS) contained in a 3.08-m-diameter spherical
ing nuclear process would definitively establish the Majara ner balloon (IB). The IB is constructed from 2Bn-thick
nature of the neutrino, and would be a profound discovery [1]transparent nylon film and is suspended at the center of the
In addition, since the rate of this process increases with thKamLAND detectorl[3] by 12 film straps of the same material.
square of the effective neutrino ma8szsz) = |EiU3im,,i ,  The IBis surrounded by 1 kton of liquid scintillator (LS) con
its measurement would provide information on the absolutdained in a 13-m-diameter spherical outer balloon (OB) made
neutrino mass scale. Searches(opf decay have been in- of 135;um-thick nylon/EVOH (ethylene vinyl alcohol copoly-
vigorated by recent measurements of neutrino mass spittin mer) composite film. The outer LS is 0.10% less dense than
by oscillation experiments, which require at least onemmeait  the Xe-LS and acts as an active shield for extesfsahnd as a
mass above-50 meV [2]. This scale is within the reach of detector for internal radiation from the Xe-LS or IB. The Xe-
present-day efforts. LS consists of 82% decane and 18% pseudocumene (1,2,4-

o . ) trimethylbenzene) by volume, 2.7 g/liter of the fluor PP({2,

Determining(ms) from aOv35 decay half-life requires  giphenyloxazole), an(.52 + 0.07) wt% of enriched xenon
knowledge of the decay’s phase-space factét} and nu-  gas, as measured by gas chromatography. The isotopic abun-
clear matrix element/®’). G can be calculated ex- dances in the enriched xenon were measured by residual gas
actly, but to date all estimations 8f°” must rely on model- analyzer to bg90.93 £ 0.05)% 36Xe and(8.89 £ 0.01)%
based approximations possessing difficult-to-quantifyesn  134xe The light yield of the Xe-LS is 3% lower than that of
tainties. The two-neutrino double-betv(f5) decay half- the s, Buffer oil (BO) between the OB and an 18-m-diameter
life, if known, can be used to constrain some relevant modedpherical stainless-steel containment tank (SST) shiilels
parameters, reducing some sources of uncertainlyL|[3, 4].s from external radiation. Scintillation light is recortiby
The first direct measurement of the 33 decay half-life of 1 325 17-inch and 554 20-inch photomultiplier tubes (PMTs)
'%Xe, recently reported by EXO-200[5], was significantly mounted on the SST, providing 34% solid-angle coverage.

below previously published lower limitsi[6, 7]. This Letlen  The SST is surrounded by a 3.2 kton water-Cherenkov detec-
the first results from the KamLAND-Zen (KamLAND Zero- +tor, Details of the KamLAND detector are given in [8].

Neutrino Double-Beta Decay) experiment reports a new mea-

surement of thé3%Xe 2v45 decay half-life, as well as im- The data acquisition system (DAQ) is triggered when 70
proved limits onOrv33 mode. The data presented were col-or more 17-inch PMTs are hit (primary trigger), which cor-
lected between October 12, 2011, and January 2, 2012. responds to a threshold 6f0.4 MeV. The signals on all hit
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FIG. 1: Schematic diagram of the KamLAND-Zen detector.
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PMTs are digitized for~200 ns for offline analysis. After o o 2o

each primary trigger the threshold is lowerec~t6.25 MeV ~ FIG. 2: Visible energy distributions of (a)'s from the Tl cal-
for 1 ms to study sequential decays. The scintillation lightiPration source and (5§*Bi (8 + v's) decays in the Xe-LS. The
from the two coincident~ produced b)}gﬁxe 43 decay can- lines |n_d|cate the best-fits to the analytical spectral rodéth the
not be separated, so only their summed energy is observe@SOIUtIon and energy scale parameters floating.

For hypotheticabv 33 decays, the sum is always 2.458 MeV

- 36 i -
(Q-value of the"*Xe 53 (_Jlecay) [9], while for the2 55 de is less than 1.0%, and the detector energy response is gtable
cays the sum has a continuous spectrum up to the Q-value. within 1.0% during the data set

Event energy is estimated from the number of observed candidate3 decay events are selected by performing the
photoelectrons (p.e.) after correcting for PMT gain vaoiat  fo|lowing series of cuts: (i) The reconstructed vertex msst
and solid angle, shadowing, and transparency of detector Mgithin 1.2 m of the detector center, defining the fiducial vol-

terials. The corrections depend on the event vertex, wisich iyme (Fv). (ii) Muon events and events occurring within 2 ms
estimated from the PMT hittimes. The vertex resolution is €s after muons are eliminated. (jii) A coincidence cut elinies

timated from radial distributions of radioactive contaamis  gequential events that occur within 3 ms of each other; this

_(see I_:ig[B) to _bev15 cm/+/E(MeV). The energy response removes99.97 + 0.01)% of 214Bi-214Po (r=237us) decays.

is calibrated withy's from a***TI (ThO,W) sourt_:e,214B| This cut is augmented with a secondary cut, aimed at iden-
(8 +~'s) from 222Rn (- = 5.5 day) introduced during detec- tifying sequentiaP'2Bi-212Po (-=0.4s), which exploits de-

tor modification, and 2.225 MeY's from spallation neutrons  t5jled PMT waveform data to identify coincidences within a
capture on protons. single~200-ns-long DAQ event window. THé?Bi-212Po re-

Fig. [2(a) shows the energy spectrum obtained when thgection efficiency i89 + 2)%. The dead time introduced by
ThO.W source, contained in &5-mm-thick lead capsule, the coincidence cuts is less tha©.1%. (iv) A background
was deployed close to the outer surface of the IB. The mosghainly from reactorv,.’s producing a delayed coincidence
intense peak is due to the primayyof 2°T| (2.614 MeV).  of positrons and neutron captusés is rejected by requiring
The less intense peak neaB.1 MeV is from multiples cas-  event time separation greater than 1 ms. (iv) Finally, candi
cades of?°*TIl. According to Monte Carlo (MC) studies, dates must pass a vertex-time-charge (VTQ) test designed to
the degradation of the primary inside the source is negli- filter out noise events. The test compares the observed PMT
gible, and the distribution around the primary peak can beharge and hit-time distributions to those expected based o
described by a gaussian and a third-order polynomial. Thehe reconstructed vertex [10]. The VTQ cut is tuned using
mean and width of the gaussian are relatively insensitive t&amLAND calibration data and reduces the selection effi-
the polynomial parameters. The resultant energy resolatio ciency by less than 0.1%. The total livetime after all cuts is
2.614MeVis(6.6 £0.3)%/+/E(MeV). The parametersofa 77.6 days. The energy spectrum@f decay candidates is
detector energy response model describing effects from sci shown in Fig[#.
tillator quenching and Cherenkov light production are con- Backgrounds to theds decay study fall into three cate-
strained to reproduce the 2.614 M&%TI peak position and gories: those external to the Xe-LS, mainly from the IB ma-
the spectral shape 8*Bi events (Fig[R2(b)). The systematic terial; those from residual radioactive impurities in the-X
variation of the energy reconstruction over the Xe-LS vaum LS; and spallation backgrounds. From a spectral analysis of



events which reconstruct close to the IB boundary, we finc

that the activity in the energy region2 < £ < 2.0 MeV E4OOC7F ("‘)f;a';< 20Me
(233 window) is dominated by?‘Cs (3 + 7); in the region 3 i gl

2.2 < E < 3.0 MeV (0v38 window), the spectrum is consis- $200¢— e
tent with2'4Bi (3 + ) decays. The observed surface activity 3 i J

ratio of 13*Cs t0'37Cs (0.662 MeV4) is consistent with con-
tamination by fallout from the Fukushima-I reactor acciden

.................

(b) 2.2 <E<3.0Me

in March 2011. The FV cutis performed to mitigate the back- ¢ 60i < pam
ground from the IB material; the remaining IB background% - ! — Total
inside the FV is estimated by fitting Monte-Carlo-generatec £ 40— e Sk
event radial distributions to the data. Hig. 3 shows the 'everlj>j 20% | 3%e OvBB

density as a function of the cubed radius from the IB cente Tl et
for the two energy ranges, along with fits to the MC distribu- oy - .

tions. Inthe2v 35 window we fit for a2v53 source uniformly (©)2Bi
distributed in the Xe-LS and &4Cs source uniformly dis- = ‘ —-Data
tributed on the IB. In thé&v 53 window we show the best-fits & ____,sz?éﬁ"in Xe-LS
for a2*Bi source uniformly distributed on the IB and either a § - 298] iy |B
OvB5-like source or a 2.6 MeV source uniformly distributed W L 1

in the Xe-LS. The radial distribution offers no discrimiimat C

between these event types. 0 I 5

Assuming secular equilibrium, the residd#tu and?32Th (R/1.54mf¥
concentrations internal to the Xe-LS are estimated to be
(3.5+£0.6) x 10716 g/gand(2.2 £ 0.3) x 1071° g/g, respec-  FIG. 3: R® vertex distribution of candidate events for &} MeV <
tively, based on sequential decays’6fBi-2'4Po and®*'?Bi- F < 2.0 MeV and (b)2.2 MeV < E < 3.0 MeV. The curves
212pg. Since equilibrium may be broken by introduction of Show the best-fit model components: a)3 (dashed) and*'Cs
contaminants during detector modification, the Bi-Po stud{dotted); (b) 2.6 MeV~'s (dashed) a”&;f Bi (dotted), the long-
ies are only used to estimate internal background from thgashed curve s fdiv 55 instead ofy's. (c) ~"Bi events from Xe-LS
222Rn210pp subchain of th&*SU series, and from th&STh- (:asged) cajmthBd(dot'Ejedg. The \(/jgrtlczzil Ilneg‘ show the fidueidius
208pp subchain of th&*2Th series; other decays in both series °f 12 M (dashed) and the IB radius (dotted).
are treated as unconstrained backgrounds. We note the well-
known 2.614 MeVy from 2°8T| (3~ decay,Q = 5.00 MeV)
in the 232Th series is not a serious background for thes 3 in the energy ranges far.2 MeV < E < 2.0 MeV and
decay search because of detection of the coincifléninthe 2.2 MeV < E < 3.0 MeV from isotopes with lifetimes of
surrounding active LS [11]. less than 100s associated with muons depositing more than

Spallation neutrons are tagged by coincidence of neutrofy3 GeV in the det?ctor (so-called shovlvenng muons) are less
capturey’s with preceding muons. We expect capture on pro-than 0.3 (torday)™“and 0.02 (torday) ~ at 90% C.L., re-
tons (2.225 MeV)!2C (4.946 MeV),'36Xe (4.026 MeV), and ~ SPectively.
134X e (6.364 MeV), with fractions 0.994, 0.008.5 x 10~4, Care has to be taken for backgrounds that produce a
and9.4 x 1075, respectively. We find no candidaté®Xe  peak close to thé@v33 decay energy (2.458 MeV), par-
or 134Xe neutron capture candidates in the data $étXe ticularly ones which may have been introduced during de-
(67, 7 =5.5min, @ = 4.17 MeV) from neutron capture on tector modification or may be induced by muon spallation.
136X e is a potentiaDv 33 background, but the expected pro- We searched all isotopes in the ENSDF database [12] for
duction rate is negligible;~2.9 x 103 (ton-day)™!, where sources with a peak structure between 2.4 and 2.8 visible-
ton is a unit of Xe-LS mass. Production rates of light nu-MeV. For all tabulated decay chains we calculate the vis-
clei by spallation of carbon are calculated from spallationible energy spectrum, accounting for the time structure of
yields previously measured in KamLANL. | [8]. We observe the chain and pile-up in the DAQ event window, and apply
a (13 £+ 6)% increase in the spallation neutron flux in the Xe- the non-linear detector energy response model to all iddivi
LS relative to the outer LS, from which we assess a 19% sysdal decay secondaries of each branch. Considering only nu-
tematic uncertainty on the calculated spallation yieldserifs  clei with decay ancestor lifetimes longer than 30 days, we
from decays of 'C (8%, 7 = 29.4 min, Q@ = 1.98 MeV) and  identify ''°"Ag (8~ decay,” = 360 day, Q = 3.01 MeV),
0C (8%, 1 =27.8s, Q = 3.65 MeV) dominate the contri- 33Y (EC decayy = 154 day,Q = 3.62 MeV), 2®Bi (EC de-
butions from spallation backgrounds. We expect rates otay, 7 = 5.31 x 10° yr, Q = 2.88 MeV), and%°Co (3~ de-
1.11£0.28 (ton-day) ! and(2.114:0.44) x 1072 (tonday)™!  cay, 7 = 7.61yr, Q = 2.82 MeV) as potential background
from '1C and'°C, respectively. Thé'C/'°C background can sources. Observation 1*Cs/37Cs on the IB raises the plau-
be reduced by a triple-coincidence tag of a muon, a neutrorsibility of contamination of detector materials by Fukushi
and the'!C/'°C decay. This is not pursued in the current anal-fallout, which include!!*Ag. One assay of soil sam-
ysis. We found no past experimental data for muon spallaples taken near the IB production facility reveal evidente o
tion of xenon. With the present data, we find the event rate$'°™Ag. Although®®Y, 2°8Bi, and%°Co are not detected near



Fukushima or our soil samples, we conservatively conside  10°g E—— %) Series
them to be possible backgrounds. Except #iBi, these — Total - 220 Seried
long-lived background candidates can be also produced frot e Total (O/BB upper limit) -~ 2%
xenon spallation by cosmic-rays when materials were above 10 1;215 o i zZLg
ground, but the rate estimations are difficult. Broadenivey t % 2R _ ﬁsexg’m UPPerimt =
search to include shorter-lived nucled( s < 7 < 30 day) 2 1RES HomAg
possibly supported by muon spallation in the detector, we S E - Extemal BG
found that the production of candidate parents with massnun @ A AN )
bers below3%Xe is stringently constrained by comparing pro- § 10g 0L 4 \
duction cross sections in [13]. w e I'—._ .

Nominally, the 1.2-m-radius FV corresponds(at38 + R \
0.005 of the total Xe-LS volumel(6.51+0.17 m?3), or 129 kg E L :
of 136Xe. The fiducial volume fraction may also be estimated i I :
from the fraction of*Bi events which reconstruct within 1.2- 10t~ ‘1 e é : 3 4
m of the IB center compared to the total number in the entire Visible Energy (MeV)

Xe-LS volume after subtraction of the IB surface contribnti
The result i0.423 £ 0.007(stat) & 0.004(syst) (Fig.[3(c)). EIG' 4: Energy spectrum of select@ decay candidates together

The difference in these estimates is taken as a measure of t & /
. > L h the best-fit back ds arav 53 d , and the 90% C.L.
systemic error on the vertex-defined FV. Combining the er- e bestfit backgrounds a3 decays, and the 90%

. . . ) upper limit forOv 35 decays.
rors, we obtain a 5.2% systematic error on the fiducial vol-
ume. The total systematic uncertainty on th@ decay half-

life measurement is 5.9%, coming from the quadrature sums; ) . -
of the fiducial volume (5.2%), enrichment &% Xe (0.05%), Cs<1.1; other fallout isotopes are negligible.

- In the OvB4 window, a strong peak appears, but the peak
0, 0,
)>§§-Eosnggggiﬁfzgt((zd%g)g/;)demcmr energy scale (0.3%), an% centered significantly above the Q-value of the decay: the

hypothesis that the peak can be described)bys decay

The 1%°Xe 2,3 and0v38 decay rates are estimated from 55n6 is rejected by g2-test at more thafio C.L. The best-

a likelihood fit to the binned energy spectrum of the selecteqi; ~ombined background rate in the/33 window allow-
candidates between 0.5 MeV and 4.8 MeV. Ti&Xe 2v55 ing for contributions from!10mAg, 58y, 208Bj, and%°Co is

decay spectrum shape from [14] is used. The contributiong 59  ( 04 (ton-day)~'. The 90% C.L upper limit on the

from major backgrounds in the Xe-LS, such &Kr, K, . \her ofi36Xe 0133 decays is< 15 events, an event rate
non-equilibrium?'°Bi, and the***U-**’Rn and***Th-**'Ra <0.034 (tonda;//)@?. y ’

decay chains, are free parameters and are left unconstraine . . v
in theyfit. The contributiopns from th&#2Rn-*19Pb and??4Th- The measure@v 3 decay half-I|f2el Oflgﬁxe_ 'S_ TIZ/2 -
208pp chains'C, and!°C are allowed to vary but are con- 2.38 :I:_ 0.02(stat) + 0.14(syst) x 1041 yr. 12'h|s is consis-
strained by their independent measurements. Residual |BENt With the result obtained by EXO-200,7, = 2.11 +
surface backgrounds in the FV are constrained by the rad.04(stat) + 0.21(syst) x 102" yr [5]. For 0v3[ decay, the
dial distribution study. The parameters of the detector endata give a lower limit of/ 7, > 5.7 x 10°* yr (90% C.L.),
ergy response model are floated but are constrained to reprasich corresponds to almost a five-fold improvement over
duced the?*®Tl source ancf??Rn-induced®'“Bi data. Po- previous limits [6]. From the limit on thé*¢Xe 0v353 de-
tential backgrounds from fallout nuclei with half-livesiger  cay half-life we obtain a 90% C.L. upper limit dfngg) <
than 30 days found in ex-situ measurements of soil or oceaf0.3 — 0.6) eV using recent QRPA (CCM SRC) [15] and
samples around Fukushima, namélCs, '34Cs, 11mAg,  shell model[16] nuclear matrix elements calculated prior t
129mTg 95N, 90Y (from 29Sr), and®Sr, as well as potential the EXO-200 measurement.
0v33 backgrounds found in the ENSDF searéhY( 2°®Bi, In summary, KamLAND-Zen provides an improved mea-
and®Co) are included as unconstrained free parameters. Theurement of the36Xe 2v33 decay half-life. The result is
relative contributions o3 window backgrounds are addi- consistent with that of EXO-200 and supports the conclusion
tionally constrained by the time variation of the event fiate  that the directly measured half-life is significantly lebs
the energy range.2 MeV < E < 3.0 MeV. the lower limits reported in earlier experiments. Our asaly
Fig. @ shows the resulting best-fit spectral decomposiincludes a search far/33 decay of'**Xe and yields an im-
tion. 2033 decay is the dominant spectral feature in theproved lower limit on its half-life. Removal of contaminant
low energy region. The best-fit number 6t%Xe 2v53 in the Xe-LS is an important task to improve thegs de-
decays is(3.55 & 0.03) x 10%, corresponding to an event cay search sensitivity. In the future, systematic uncetitzs
rate of80.9 + 0.7 (ton-day)~'. The dominant backgrounds Will also be reduced by performing source calibrations & th
at low energy are fron¥°Kr and 21°Bi, with best-fit rates Xe-LS.
of 196 4+ 8 (tonday) 'and 103 + 3 (ton-day) !, respec- The KamLAND-Zen experiment is supported by the
tively. The fit yields the following 90% C.L. upper limits Grant-in-Aid for Specially Promoted Research under grant
on other background rates (per tday) in the Xe-LS:*°K 21000001 of the Japanese Ministry of Education, Culture,
<9.6, 2*Pac1.5, 134Cs<0.4, 228Ac <0.7,°Y < 0.8 and  Sports, Science and Technology; the World Premier Inter-
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national Research Center Initiative (WPI Initiative), MEX individual institutions. The Kamioka Mining and Smelting
Japan; and under the US Department of Energy (DOE) Grar@ompany has provided service for activities in the mine.
No. DE-AC02-05CH11231, as well as other DOE grants to
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